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Abstract—In recent years, especially after the Coronavirus
pandemic, extensive research has been conducted to propose
models for the spread of viruses in social networks, and to come
up with viable techniques to reduce the propagation of viruses. In
this paper, we propose a new general time-evolving graph model
that is suitable to be applied to viral spread propagation studies.
Furthermore, with a focus on a rare type of infecting mode
called the aerosol model, which turns out to be one of COVID’s
transmission types, we study the simple problem of minimizing
the total exposure of a virus within a group of people that visit
a place or set of places successively. An extensive simulation
is conducted to examine the efficiency of our viral-minimizing
spread technique and to compare it to other possible scenarios
of the behavior of the population.

Index Terms—Aerosol transmission, droplet transmission,
time-evolving graphs, virus propagation.

I. INTRODUCTION

The problem of minimizing the spread of viral infections
in daily life has been studied widely in the recent years [1—
4]. Models have been proposed to imitate the propagation of
viruses within a society. However, the direct droplet infection,
which happens by direct contact, is the one mainly considered
with little attention to the indirect contact infection that
happens via aerosol spreading.

Usually, a person may infect another person by the direct
droplet model if they have a direct contact during a period
of time (say, within 6 feet during a duration of 15 or more
minutes). It was found that SARS-COV-2, the virus that causes
the Coronavirus disease COVID-19, can be transmitted by the
aerosol model. A person who carries the virus visits a closed
room and leaves behind a particle enclosed under pressure
suspended in the air, this particle carries an active virus that
may infect another person if exposed to it within a short
period time (i.e. within 5 minutes) with a high probability,
even if the main infecting person is not present in the closed
room anymore. It has been speculated that the indirect aerosol
particle can stay in the air for as long as one hour [16].

The aerosol model implies that after an infected person
leaves the room, it is still possible to infect another person
even if they do not have contact directly. In general viral
spreading research, the aerosol model was not studied ex-
tensively due to the fact that it is not a dominating mode
of transmission among other types of viruses [16, 17]. This
means that after the main infected person leaves the room, it
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Fig. 1: An illustration for the toy example of the problem, the order of the
rooms can changed, and each person can be assigned a specific appointment
to visit the rooms. The numbers in the circles represent the order of the step.

is still likely that they infect another person who visits the
empty room within the next 5 minutes after the first visit.
The fact that this type of infection does not dominate in usual
viral propagation schemes in social networks and its negligible
effect in general leads to the disregard of this way of spread
in general cases.

A toy example of the problem is having the case of
managing m rooms that a set of N people will visit at
different steps as illustrated in Figure 1, each person has an
an initial probability of holding the virus. Given that your
responsibility as the room manager is to minimize the total
final viral exposure within the served population after visiting
the rooms, we investigate the optimal time assignment of the
population to give them appointments to visit the rooms within
the specified periods of time.

We consider multiple cases of having the people visit the
room for a relatively short period of time, say instantaneously
or for 3 minutes so that there are no contacts among the people
inside a room, and for a relatively longer period of time, say
20 minutes, where people have direct contacts. We consider
the multiple possibilities to the visitation time for each person
and the order of the rooms. Both the aerosol model, which will
be dominant in the first case of short-period visiting, and the
direct droplet infecting model, which dominates in the second
case of long-period visiting, are considered within our model.

In our study here, we consider a simple and extreme case
to focus on the aerosol model in viral propagation between
several people, as well as considering the droplet model. We
start by studying the problem of having multiple people with
an initial virus exposure probability aiming to visit a closed
room (e.g. a closed restaurant applying COVID restrictions for



preventing indoor dining) instantaneously or for a short period
of time to pick up something (e.g. a food order). Hence, the
main way of being exposed to the virus is by catching the
aerosol from a previously infected person who has visited the
room. The room has its own starting and finishing time.

After that, we consider a more general problem of having
those people visit a sequence of rooms, with each room having
a specific available period of time to be visited in. The order
of the availability of the room and the times at which each
person visits each room are the concern of the study to try to
minimize the total virus exposure within the population.

Our results in this research study are summarized as fol-
lows:

« We propose a general time-evolving graphs model that
is appropriate to represent the viral propagation scheme
under both the direct droplets and indirect aerosol ways
of infection.

« We evaluate the optimal schedule for the population to
instantaneously visit a specific room so that the total viral
exposure is minimized.

« We evaluate the optimal schedule for both the population
and rooms available to be instantaneously visited under
the objective of minimizing the total viral exposure.

« Simple polynomial-time algorithms are presented to com-
pute the optimal solutions for the problems.

The remainder of the paper is organized as follows. In
Section II, some related works are reviewed. In Section III,
the novel model of time-evolving graphs that are appropriate
to describe the aerosol and droplet models in the same time
is proposed with a focus on our concerned model. In Section
IV, various versions of the problem are explored from the
simplest one to the more general one. In Section V, the more
general problem of having multiple rooms is explored and a
corresponding algorithm is provided. In Section VI, simulation
results are presented to evaluate the efficiency of our solution.
Finally, Section VII gives the conclusion.

II. RELATED WORK

The significant effect of huge social disruption and eco-
nomic impact of various different epidemic types that propa-
gated worldwide has been widely studied [1-4]. The current
COVID19 pandemic has specifically had one of the most
disastrous impacts on the world [2, 5-8]. Hence, several
studies have been conducted in order to try to understand the
main epidemic outbreak models as well as to come up with
good strategies to halt the eruption and spread of epidemics
[9-11].

Even though there has been extensive research done in the
last decades in order to determine the exact way influenza-
like viruses spread, it remains not completely understood
how those viruses, including the Sars-Cov-2, propagate among
people. Typically, the transmission of those viruses has been
assumed to happen mainly by the air, direct physical con-
tact, and being exposed to contaminated surfaces [12, 13].
The traditional airborne transmission happens mainly in two

different ways: either by droplets, which are large particles
of respiratory fluid, or by smaller aerosolized particles that
remain held in the air.

Tellier [14, 15] has made a study that implied that di-
rect droplet transmission requires close physical proximity
between infected and susceptible individuals since the gravity
quickly pulls down larger droplets to the ground, whereas
aerosol transmission can happen over larger distances and
does not necessarily need to have the infected and susceptible
individuals at the same location at the same time.

Until recently, all of the research done considers the close
contact transmission as the dominant infecting way, because
largely the evidence to support the importance of transmission
through aerosols was minimized. However, the question of the
importance of the multiple transmission routes has recently
received greater attention. Multiple research studies have pro-
vided good evidence for the importance of aerosol transmis-
sion specifically in the past few years [16—18]. Fruthermore,
among various optimization problems related to epidemic
control, Zheng et al studied a way to open up different sectors
of the society to maximize the social welfare subject to a given
threshold of epidemic spreading [19].

Noti [16] has conducted an experimental laboratory study
using a patient examination room containing a coughing
manikin which provided further support for aerosol transmis-
sion. Lindsley [20, 21] has conducted a study with outpatients
who tested positive for influenza A virus and demonstrated
that 53% and 42% produced aerosol particles containing
viable influenza A virus during coughing and exhalation,
respectively.

III. TIME-EVOLVING NETWORKS

In this section, we introduce a new model for time-evolving
networks. We will construct a novel enhanced time-evolving
graph that shows information about both frequency and dura-
tion of interactions along both time and space. Our times-
tamped contact network tracks the frequency and duration
of all interactions within a specified radius. Therefore, we
propose two additional measures for time-evolving graphs to
represent two transmission modes: time-sensitive connectiv-
ity/reachability and enhanced time-evolving graphs.

A. The construction of time-evolving graphs

First, we will construct a time-evolving graph to represent
our contact network. Let G(V, E) be a graph where V is the
set of vertices (i.e., nodes) and F is the set of edges (i.e.,
links). G1,G3,...,Gr is an ordered sequence of spanning
subgraphs for time sequence (for simplicity, we use the time
sequence 1,2,...,7T). G; is a subgraph during the time unit
1, where all edges are labelled with timestamp i.

The time-evolving graph is the union of these subgraphs.
Figure 2 shows an example of a direct contact (say within 6
feet) based on a given transmission range on a campus with
a focus on venues (i.e., a classroom, club, dormroom) where
people interact. Figure 2 (a) and (b) show snapshots at two
different times, ¢; and t,, respectively, where (c) shows the
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Fig. 2: (a) node distribution at ¢1 (b) node distribution at t2 (c) time-evolving
graph over the time period [t1, tg]. White circles denote static nodes. Gray
nodes denote moving nodes.

corresponding time-evolving graph during the period between
t and tg. For example, as seen in (a), at t1, node A is in a
dorm, nodes C' and D interact with one another in a club, and
FE is in a classroom. In (a), nodes B, C, and D are moving
in different cycles and nodes A and F are stationary.

As seen in (b) at to, node B moves to the dorm (shown in
the dotted arrow line) as a cart of a circular movement between
three locations. That is, at ¢3 (not shown in the figure), B
moves from the dorm to the classroom and at ¢4, back to the
original place at ¢;. At t3, node C' moves from the club to
the dorm and node D moves from the club to the classroom.
All moves are made within one unit of time, followed by the
next move at the beginning of the next time unit.

The time-evolving graph representing all of the interactions
over the 6-unit time period is seen in (c). In time-evolving
graphs, nodes v and v are said to be connected, if a path
u — v exists with an alternation of nodes and links, starting
from v and ending with v. Links along the path from u to
v are associated with labels with increasing timestamps. For
example, in (c), A can reach E via B through multiple paths
including A 2 B% E orvia C and A can reach D through
multiple paths including A L0 5% D2 E. As seen in
Figure 3 (a), different sets of nodes can occupy the same venue
(i.e., club rooms 1 and 2), at different times, ¢; and t5, in a
spatiotemporal pattern.

To simplify our discussion, all individuals in the same room
are assumed to be in a proximity close enough to all others
in the room to spread the disease through respiratory droplets
as shown in solid lines in (b) (figure adapted from Smiezek et
al). With aerosol transmission, infected nodes can shed viral
particles while in the room, which may infect others in the
room concurrently or up to three hours later (ie., A < 2.5
hours). Assuming to < t; + A, the unidirectional arrow in (b)
shows the additional aerosol transmissions.

We extend the time-evolving graph by adding a venue node
shown in (c) to represent club 2 (only the subgraph for club
2 is shown). A potential transmission path still requires an
increasing timestamp sequence. In addition to that, the time
difference between when one node exits a venue and another
enters should be within A.

We will use a venue node to avoid edge explosion - when
there are many people in a club at two sequential timestamps
(e.g., if there are two different sets of 25 people in Club 2 at
t1 and o, which would generate 25 x 25 = 625 aerosol links
between unique individual nodes). Using a venue node (c)
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Fig. 3: (a) Club room occupancies at ¢1 and t2 (b) droplet and aerosol
transmission (c) enhanced time-evolving graph with the venue node (in bold)
where the clique of nodes B, D, and E can be replaced by a hyperlink to
further simplify the graph.

reduces the number of links significantly to 25+25 = 50 links
(i.e., 50 individuals, each of them connected to one venue).

B. Enhancement on the time-evolving graph

The enhanced time-evolving graph has a similar definition
to the time-evolving graph, except that each link at ¢; is asso-
ciated with a weight w; which corresponds to the timestamp.
Here, weight w; is associated with contact duration. We can
extract, of slice, any subgraph with link timestamps satisfying
a particular time or time interval. For example, one can get a
subgraph that includes all contacts within a contact duration
range. In our analytical extension, we look at the node degree
at a particular time slot to calculate the average node degree
during that time or time interval. For example, as seen in
Figure 2, C’s node degree at to = 2. C"’s average node degree
during t1 6] = §-

We also introduce a new metric, spread, for social network
analysis. The spread of a given source at ¢; corresponds to the
connectivity/reachability set which includes all nodes along
any path initiated from the source at t;. We can consider
various types of spread by either restricting the final time
to ¢;, i.e., spreading over the period of [t;,¢;] or average
spread of the source during a given period. Spread measures
the reachability of a given node to other nodes. A node can
be reached multiple times via different or the same neighbors.

In the example of disease spreading, the spread in a given
period measures the disease spread of a particular source
across the network. The actual spreading of diseases depends
on the compartmental model selected in epidemiology. This
indicates that the enhanced time-evolving graph captures both
highly dynamic and irregular mobile contact patterns in the
real world in a static graph representation. The time-evolving
dynamics are captured by labels associated with each link.
Given that classes, club meetings, and time spent in one’s
dorm tend to occur on a similar schedule each week, the label
sequence can be condensed. Furthermore, link timestamps
can be aggregated to present any time interval (i.e., day,
week, month, etc.) depending on the need. Nodes can also
be clustered to form a community based on a particular
feature (e.g., college freshmen), where link characteristics to
outside communities are derived from a particular aggregation
function on all members within the community.



® @ ® @ G

2] ty t3 ty ts

Fig. 4: The optimal distribution of 5 people with equal initial probability
under the instant visiting model.

IV. PROPOSED MODELS

In this section, we introduce our employed aerosol spread
models for different settings.

A. Instant Visiting Model

In this subsection, we introduce the model of the problem
where N people visit a room within a specific visitation time.
Each one of them visits the room in a single different instant
of time leaving behind aerosol particles in the air which may
infect the person who visits the room afterward. The aerosol
effect deteriorates exponentially and aggregates when more
than one person contribute in it.

Now, we construct the objective function to optimize after
building the model for the given settings. We have the set
of moments at which the N people visit the room T =
[t1,t2,...,tn], where people are ordered from person 1 to
visit the room to the N™ person. The initial probability
that the people carry the virus is denoted as pi,ps,...,PN
respectively. Equation (1) [14] represents the probability that
person ¢ infects person j, depending on this aerosol model
under the simple exponential approximation; the infection of
person j from person ¢ depends on the final probability that ¢
carries the virus, which is calculated from equation (2) [14].
71 depends on the volume of the room and the climate of its
air in addition to its humidity and ability to carry the aerosol
particles.

pis(T) = {0.5p{(T) xe T i 0
' i =7
Jj=i
pl(T) =1 ] = ps(T)) 2)
j=1

p{ (T) is the final exposure for person ¢ given the time
assignment of the people in the set 7'. The construction of this
model in this accurate way makes the function recursive in its
nature. Hence, the function in equation (2) calls the function
in equation (1) which calls the function in equation (2), until
the base condition p1,(T") = p{ (T') = p1 is reached. Now,
after computing py,ps, ..., py, we will have the optimization
problem in equation (3) given the specific domain of the
entries of 7T'.

=N
min Z} P! (T) 3)

Our objective is to minimize the total exposure to the virus.
The recursive nature of pl-f (T') makes no closed-form solution
able to be evaluated directly. Running a software for evaluating
the exact solution where the initial probability is the same
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Fig. 5: The optimal distribution of 5 people with equal initial probability
under the interval visiting model. 72 is high in this example.

shows the optimal 7' has both #; and ¢y fixed on the two
extreme ends of the possible time domain of the room, and has
the time instances for the people in between distributed in a
way such that the time gap between the people decreases with
time. Figure 2 illustrates the optimal distribution of people for
a toy example.

B. Interval Visiting Model

Here, the studied problem where N people visit a room such
that each person visits it once for a fixed range of time, named
A. Thus, a second way of infecting has to be considered, this
way is by droplets of direct exposure. The direct exposure
effect between two people depends on their common time
visiting the room in the same time.

Now, we denote the common time between person ¢ and
person j by t;; (which equals t;;), and we, for simplicity,
may consider the presence of the people to be instant for
their aerosol effect. Equation (4) [14] shows the probability
that person ¢ infects person j with the direct exposure model
under the exponential approximation. R is the set of the direct
exposure time between every pair of people, which is given
by {t;j|1 <i < j < N}. m is the direct exposure factor that
depends on the vicinity of the people visiting the room and

the air of it. .

gi5(R) = pi(1 — ™ 72) 4)
Now, to modify the effect from a person to another person,
we add the aerosol and the droplet effects under the standard
probability model. The probability that person ¢ infects person
7 under this model is represented in equation (5).
pi; (T, R) = {pij(T) + 94 (R) — pi;(T)gi; (R) z 7éj: 5)
bi =7
Having the recursive pair between equations (2) and (5),
with the small modification of equation (2) in its arguments to
include R too, the optimizing problem in (3) will be the same
for this model with the inclusion of R. Figure 3 shows the
settings of this model for an example. It is worth mentioning
that in Figure 4, the transmission from C' to D cab be done

via aerosol or droplets (a direct link from C' to D or a path
from C' to D through Club 1).

V. THE OPTIMAL SOLUTION OF THE PROBLEM

In this section, we demonstrate the construction of the opti-
mal solution of the problem of figuring out the arrangement of
the people to visit a room instantaneously given their initial
probability and the time period for the room, which spans



from ¢; to ty. In order to construct the optimal solution,
we are required to determine the optimal order of the people
to visit the room under the instant visiting model, and then
demonstrate the method to evaluate the exact time assignment
for each one of the people.

A. Determining the optimal order of the people

Since our objective is to minimize the total average expo-
sure to the virus, the optimal order of the people to visit a room
instantaneously turns out to depend on the initial probability of
the people regardless of their number and the allowed period
of the room.

Theorem 1. The optimal order of the people visiting a
room instantaneously is the decreasing order of their initial
probability of carrying the virus.

Proof. Given an initial clean room, for which the first-visiting
person does not have their initial exposure probability p; in-
creased, the only cause to increase the probability of exposure
for any person under the instant visiting model is the aerosol
aggregated from all of the previous visiting people to the
room. Hence, p{ = p;. This aerosol effect from the previous
people depends exactly on two parameters; their probabilities
of having the virus ps and the moments at which they had
visited the room iy, given that the first visiting-person is
already picked.

Now, we assume that we already have the optimal assign-
ment of the moments at which the people would visit the room
without knowing the optimal order for them (i.e, knowing the
optimal set 7" that minimizes the total exposure). Having done
that makes the only parameter that would minimize the total
exposure to the virus > '— f[ p{ (T") to be the initial probability
of the people visiting the room pjy.

Now, we narrow down our consideration to the individuals
and consider them independently. We start from the second
person, to have his probability pg increased as little as possible
means that the first person will definitely have to be the one
with the least initial exposure probability. Moreover, to have
the total exposure for those two people minimized, we have
to choose the second person to be the one with the least initial
probability of the rest of the people.

Considering the third person, to increase their probability
pg,: as little as possible, we would need to have the people
visiting the room before them to have the least possible initial
exposure probability. Hence, it would mean including the peo-
ple with the least initial probability and the least total exposure
probability, which exactly implies having the optimal solution
of two people (the one with the least exposure probability then
the one with the second least exposure probability.)

Applying the same argument on the visiting people from
the second person to the last one would directly give us the
decreasing order of the people’s initial probability to be the
optimal order of them. O

Having proved the optimal order of the people to be
their decreasing order with respect to their initial exposure
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Fig. 6: An example of the interval-visiting settings for the optimal order
applied depicted using the proposed evolving graph.

probability, regardless of their exact probabilities and the time
span available for the room, the time complexity to determine
this optimal order would trivially be the same for sorting them
in decreasing order of their probabilities, which is known to
take O(Nlog(N)) time where NN is the total number of people
that will visit the room.

Figure (6) shows an example, people from A to D have
initial viral exposures in increasing order. Person A infects
person D with the aerosol infecting way; all other interactions
between the people are mixed by having them infecting each
other using the droplets and the aerosol way together. A is the
visiting period for each person assuming that they are equal.

B. Determining the optimal time assignment for the people

Since we have already determined the optimal order of
the people visiting the room, determining their optimal time
assignment would not be more than the optimization mathe-
matical problem shown in equation (3).

Solving the problem for determining 7" would mean solving
the system of partial differential equations of setting the
following value to equal the zero (N — 2)-dimensional vector.

= ]
81& (fg,fg,...,t]v_l)
- O3 p
=N T Lai=1 Py
to,tgs . N
v > i) = o, It N-1) =0 (6)
=1
D
by tg, . N
| ote (ta,ts, ..., tN 1)_

The process of solving this equation can be done analyti-
cally or numerically. The 7' that would result from it is the
optimal time assignment for the people to visit the room.

Theorem 2. The optimal set of visiting times to be assigned
for the visiting people T is the one that solves equation (6).

Proof. Since our objective function to be minimized
Y f[ p!(T) is convex, the closed-form solution that is ob-
tained analytically from directly evaluating the minimum point



Algorithm 1 One-room optimal time assignment

Algorithm 2 Multiple-rooms optimal time assignment

Input: Initial exposure probabilities {p1,p2,...,pn} and the
availability time of the room ¢ — t1.

Output: The optimal time assignment for the visiting people.

1: Sort the probabilities in increasing order and set them to
[plap% s 7pN]'

2: Compute ts,t3,...,ty—1 from equation (6).

3: Return the optimal time assignment 7.
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Fig. 7: The optimal distribution of 3 people with equal initial probability under
the interval visiting model to visit three rooms with different time periods.

of the function calculating T that sets the gradient of the
function to zero directly gives the optimal solution. [

Algorithm 1 is a simple algorithm that evaluates the optimal
time assignment for the instant visiting model by which the
total exposure to the virus is minimized. The complexity of the
algorithm depends on the way chosen to compute the solution
of equation (6). Considering the standard O(N?) solution for
the system of linear differential equations gives us a time
complexity of O(Nlog(N) + N3) = O(N3).

VI. THE PROBLEM OF INCLUDING MULTIPLE ROOMS

In this section, we include a more interesting problem of
having multiple rooms (or activities) to be visited by each
person once. Each room is available for a specific length of
time, but no two rooms are available at the same time. The
objective is to find the optimal order of activities given a set
of people with their initial probability of having the virus and
the period of each room’s availability.

Figure (9) shows a toy example of the concerned problem
where the initial probability of having the virus is the same for
all people and nontrivial (i.e., between 0 and 1.) The lengths
of the rooms are different as shown. The instant visiting model
is considered for this problem.

Theorem 3. The optimal order of the rooms to be visited
instantly is the increasing order of their time period lengths.

Proof. For a specific number of people with their initial
exposure probabilities, visiting a room instantly with a longer
time span would result in a less final total exposure to the
virus. This is a direct corollary from equation (3) which would
minimize the total exposure as ¢t — t; increases.

Now, since we know that the function in equation (3)
increases monotonically with the initial total probabilities of
exposure for the people visiting a room instantly, it would be
apparent that starting with the people with less total initial

Input: Initial exposure probabilities {p1,p2,...,pn} and the
availability times of the rooms.

Output: The optimal time assignment for the visiting people
and the order of the rooms.

1: Sort the rooms by the decreasing order of their time periods.

2: For each one of the rooms do

3:  Call Algorithm 1 and set the exposure probabilities to

{o],05,....pL}-
4: Return the optimal time assignments for all of the rooms.

exposure p; will never result in a greater total final exposure
sz[ pif (T') compared to starting with the people with more
total initial exposure.

Having determined that the people would leave the room
with the longer time period with less total exposure than what
they would have if they visit a room with shorter time period,
and having determined that starting with a less total initial
exposure always results in a smaller total final exposure, we
would be able to conclude directly that the optimal order of
the rooms is the same order by which the total initial exposure
for the people before starting visiting any room is minimized.

Minimizing the initial total exposure for the people before
visiting a specific room in this case is equivalent to assuring
that the people would visit the rooms with longest period
possible before visiting the specific room. Applying that to
the rooms from the second to the last one results in having
the increasing order of rooms with respect to their time periods
to be the optimal order. [

Having proved the optimal order of the rooms to be their
increasing order with respect to their time periods regardless
of the people’s exposure probabilities and the exact time span
available for the room, the time complexity to determine this
optimal order would trivially be the same for sorting them in
increasing order of their time periods, which is known to take
O(mlog(m)) time where m is the total number of rooms to
be visited instantly.

Algorithm 2 determines the optimal order of the people
and the rooms with their time assignments for each room.
The total time complexity for this algorithm would again
depend on the method of solving equation (6) when calling
Algorithm 1, if we opt to solve equation (6) with the simple
linear approximation for the involved functions, and taking
that approximately solving a system of linear differential
equations takes O(N3) time, the total time complexity for
solving the problem in the given equation-solving method
would be O(mN? + mlog(m)).

VII. SIMULATION
In this section, we conduct simulations to evaluate the
effectiveness of the algorithms discussed in this paper.
A. Experimental Settings

In our simulations, we consider multiple scenarios of the
possible distribution of the people visiting and different orders
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Fig. 8: The average total exposure of the virus under the instant visiting model versus (a) the number of people (p; = 0.2,ty —t1 = 5) (b) 71 (p; = 0.2,N =
5ty — t1 = 5) (c) total time (p; = 0.2,N = 5) (d) the number of rooms (p; = 0.2,N = 5ty —t1 = b).
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Fig. 9: (a) An optimal and uniform time assignments for four people visiting
a room under the instant visiting model, p1 = p2 = p3 = 0.5. (b) The

average total exposure of three people under the instant-visiting model. t1 =
0, t3 = 2, p1 = p2 = p3 = 0.5. The minimum point is pointed out in red.

of them. Studying both the single-room and multiple-rooms
scenarios, the main studied orders of the visiting people in
terms of their initial exposure probability p; are:

o Increasing order.

o Decreasing order.

o Uniformly random order

o Clustered random order.

The uniformly random order is the order which assigns
each person with a specific initial exposure probability p; to a
random index in a uniform way. The clustered random order
is the order which assigns each person with a specific initial
exposure probability p; to a random index in a way that makes
it more likely that similar initial exposure probabilities will
end up ordered in a successive order of indeces. We consider
the clustered random order because this is the most realistic
model; if we consider a household of n members visiting
the concerned room, the initial exposure probabilities of the
members of the household would be highly correlated to the
extent that we can consider it to be equal.

After considering the possible orders of the visiting people,
we will consider three possible different visiting times of the
people:

o Optimal visiting times; which is denoted as the solution
set T' of equation (6), considering the first and last people
to visit the room at the first and last moments. Solving
the underlying system of nonlinear partial differential
equations has been done numerically.

o Uniformly-distributed visiting times; which are simply
the times in which the visiting people are spaced uni-
formly (i.e., the spacing between them is %).

o Clustered-distributed visiting times; which are the most
realistic, in which a random group of people visit the
room nearly together. Finally, for each case, we will
consider both the instant visiting model and the interval
visiting model.

When we say that a person visits the rooms at time ¢y, it
means that the person is visiting the room in the interval from
[to, to + A]

B. Experimental Results

In this subsection, we demonstrate the results of the out-
come for the above different configurations of the people. We
set the parameters of the exposure model to more realistic
settings to represent the affects of the direct and the aerosol
infecting models. The parameter 7; will be set to 10 minutes,
which represents the time needed for the aerosol particles
to have diminished affect by é, i.e., the effectiveness of the
aerosol particles becomes around 36.8% from its strongest
effectiveness factor after 10 minutes from the moment the
affecting person visited.

Parameter 75 is set to be 5 minutes, which means that a
5 minutes duration of direct exposure between an infected
person and an uninfected person is enough to infect the
uninfected person 1 — % of the time, which is 63.2% of the
time. Furthermore, for simplicity, we will set A to be 10
minutes always for the duration of the visit to the room.

Figure (9) studies closely a simple room with four people
and three people under the instant-visiting model, we will
study the average of the total. For four people, the decreasing
gap in the time assignment in the people is apparent in contrast
to the uniform time assignments case. Figure (9) (b) shows the
final exposure for three people as a function of the visiting
time of the second person; we see that the optimal time
assignment is slightly larger the middle point, which indicated
that the uniform distribution of the time assignments is not the
optimal one. The minimum point in the figure is the one that
solves equation (6).

Another good observation for the instant visiting model is
the average total exposure versus the number of people visiting
the room within the same time period. The time assignment
and the order of the people was set to the optimal assignments.
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Fig. 10: The average total exposure of the virus under the interval visiting model versus (a) A (p; = 0.1,71 = 10,ty —t1 = 5,N =5) (b) 71 (p; = 0.2,A =
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Optimal visiting time

Uniform visiting time Clustered visiting time

Ti1=1 | T1=5 |Th=9 |[T1=1 |T1=5 [Th=9 |Ty=1 |[Th=5 |T4=9
Increasing order 0.45 0.51 0.57 0.53 0.59 0.67 0.68 0.70 0.73
Decreasing order 0.65 0.70 0.72 0.69 0.72 0.73 0.71 0.73 0.75
Uniformly random order | 0.59 | 0.62 0.63 0.62 | 0.64 0.66 0.69 071 | 0.74
Clustered random order 0.62 0.64 0.66 0.74 0.75 0.76 0.76 0.77 0.78

Fig. 11: The average total exposure for 50 people visiting a room under the instant visiting probability within two hours, where their p; = 0.35.

Optimal visiting time Uniform visiting time Clustered visiting time

A=1| A=2 |[A=3 |A=1| A=2 |A=3 A=1 |A=2 | A=3
Increasing order 057 |0.52 0.58 054 | 0.62 0.68 0.69 0.71 0.73
Decreasing order 0.66 | 0.70 0.73 070 073 0.73 0.73 0.74 | 0.76
Uniformly random order | 0.61 | 0.63 0.64 0.63 | 0.65 0.67 0.70 071 | 0.75
Clustered random order | 0.63 0.65 0.67 0.76 0.77 0.78 0.77 0.77 0.79

Fig. 12: The average total exposure for 50 people visiting a room under the interval visiting probability within two hours, where their p; = 0.35.

Finally, we consider the average total exposure under dif-
ferent settings of the single room under both the instant
visiting model and the interval visiting model, Figure (9) and
Figure (10) show the variety of the average total exposure
considering the two different models. From the numbers
shows, we can conclude, as expected, that the average total
exposure - Z:j\] p{ (T') is less in all cases under the instant
visiting model. We may observe that the uniformly-distributed
time assignment for the visiting people, especially under the
decreasing and increasing orders of them, is very near to the
optimal time assignment that minimizes the total exposure.
Another very interesting result is the disparities of the values
of the average total exposure, whether under the instant
visiting or the interval visiting models, between the optimal
order, which is the increasing order, and the worst-case order,
which is the decreasing order case.

Figure (8) shows the patterns of the change of our objective
function of the average total viral exposure with respect to the
different parameters of the number of people, 7, and ¢y — 1
for the single-room instant visiting model, and the change with
the respect to the total number of rooms in the multiple-rooms
situation. We may conclude that for the number of people, the
total average viral exposure increases significantly at first and
then starts to saturate rapidly.

Observing the behavior of the objective function at

Figure(8) with the change of tau;, we can see the gradual
increase of the value of the objective function there. On the
other hand, the direct nearly-linear correlation between the
total average viral exposure and the total time shows the
significance of this factor, especially in the case of the single-
room scenario. Part (d) of the figure shows the more general
sequential multiple-room problem.

Figure (9) shows the most simple case of having three
people visit a room within 2 time units, setting 7; to unity. The
intricate exponential function’s extremum lies slightly after
the middle point. This unevenness extends to multiple people
distribution in a way that shifts the optimal time assignments
slightly to the right from the uniform distribution of time
assignments.

Figure (10) shows the average total exposure under the
interval visiting model of the period of delta. Starting from
the first parameter of having the visiting period change, we
observe the dominance of the droplet transmission model over
the aerosol; having the visiting time increase a little bit in a
way that guarantees that some kind of overlap may happen
between different visits of the people guarantees that the term
g(R) in equation (5) prevails.

Furthermore, we can consider that the correlation between
the average total exposure and the change of 75, which is the
direct droplet model parameter, is stronger than its correlation



with the change of 7y, which is the aerosol model parameter.
Moreover, the width of the window plays significant role in
affecting the average total exposure until it reaches around
130% of the initial probability. At that point, the value of the
objective function saturates.

C. Simulation Summary

In this subsection, we discuss the summary of the previous
results and their usefulness in our model.

Starting from the instant-visiting model, we observe from
the results the intuitive outcomes of the increasing nature of
the total viral exposure with the number of people visiting
the room in a specific time window. When the visiting people
are sorted in the optimal order, which is the increasing order
in terms of their initial exposure probability, the total viral
exposure would be within 65% of the more realistic order,
which is the clustered random order, considering the best time
assignment for both settings. Furthermore, in the multiple-
rooms settings, we see how visiting successive multiple rooms
increases the total exposure of the virus in different ways
depending on the order of the rooms to be visited.

Regarding the interval-visiting model, the results show that
the total exposure of the virus increases with the number
of people steeply at certain thresholds at which the optimal
time assignment would involve significant overlapping times
between the visits of the different people in a way that the
direct exposure infection (i.e. under the droplet model) starts
to prevail over the aerosol infection model. The significant
effect of the visiting time for each person A is apparent
too. Furthermore, in this setting, the optimal order of the
visiting people, which is the increasing order in terms of
their initial viral exposure, does not significantly differ from
the clustered random order because of the dominance of the
droplet infecting way. The multiple-room settings show how
the total viral exposure increase with the number of rooms to
be visited.

VIII. CONCLUSION

In this paper, we propose a new general time-evolving graph
model that is appropriate to apply to viral spread propagation
studies. In addition to that, with a focus on a rare type of
infecting mode called the aerosol model (which is one of
COVID main ways of transmission, beside the main direct
infecting way done by the droplets) we study the simple
problem of minimizing the total exposure of the virus within a
group of people that visit a place or set of places successively.
Both instant and interval visiting models are considered. An
extensive simulation is done to examine the efficiency of
our viral-minimizing spread technique. The results show the
disparities in the average total exposure for the virus between
the increasing order, which is the optimal order, and other
orders, as well as between different time assignments of the
visiting people. The simulations show that our optimal order
and time assignment reduce the average total exposure for the
same settings by around 35%.
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